Reaction of Dichloroketene and Sulfene with N,N-Disubstituted α-Aminomethyleneketones. Synthesis of Pyrano[2,3-e]indazole and 1,2-Oxathiino[6,5-e]indazole Derivatives

Luisa Mosti, Giulia Menozzi and Pietro Schenone*

Istituto di Scienze Farmaceutiche dell'Università, Viale Benedetto XV-3, 16132 Genova, Italy Received July 1, 1983

The polar 1,4-cycloaddition of dichloroketene to N,N-disubstituted (E)-5-aminomethylene-1,5,6,7-tetrahydro-(1-methyl)(1-phenyl)-4H-indazol-4-ones V, prepared from 1,5,6,7-tetrahydro-(1-methyl)(1-phenyl)-4H-indazol-4-ones via the 5-hydroxymethylene derivatives, gave in good yield N,N-disubstituted 4-amino-3,3-dichloro-4,5,6,7-tetrahydro-(7-methyl)(7-phenyl)pyrano[2,3-e]indazol-2(3H)-ones VI, which are derivatives of the new heterocyclic system pyrano[2,3-e]indazole. Dehydrochlorination of VI with DBN afforded N,N-disubstituted 4-amino-3-chloro-6,7-dihydro-(7-methyl)(7-phenyl)pyrano[2,3-e]indazol-2(5H)-ones VII generally in satisfactory yield. Full aromatization with DDQ of VII was tried only in the case of dimethylamino derivatives, giving a moderate yield of 3-chloro-4-dimethylamino(7-methyl)(7-phenyl)pyrano[2,3-e]indazol-2(7H)-ones. Cycloaddition of sulfene to V occurred only in the case of aliphatic N-substitution to give in moderate yield 4-dialkylamino-4,5,6,7-tetrahydro-(7-methyl)(7-phenyl)-3H-1,2-oxathiino[6,5-e]indazole 2,2-dioxides, which are derivatives of the new heterocyclic system 1,2-oxathiino[6,5-e]indazole.

J. Heterocyclic Chem., 21, 361 (1984).

We recently described a convenient synthesis of a number of substituted 1,5,6,7-tetrahydro-4*H*-indazol-4-ones [1]. In pursuing our work on new heterocyclic systems having 2*H*-pyran and 1,2-oxathiin rings incorporated in potential pharmacologically active molecules [2,3], we have chosen 1-methyl and 1-phenyl-1,5,6,7-tetrahydro-4*H*-indazol-4-one I and II as synthons for the building up of two new heterocyclic systems, namely pyrano[2,3-*e*]indazole and 1,2-oxathiino[6,5-*e*]indazole.

Reaction of indazolones I and II with ethyl formate and sodium gave in good yield the 5-hydroxymethylene derivatives III and IV, respectively (Table I). The starting enaminones Va-h (Table II) were prepared in excellent yield from III, IV and secondary amines. They are probably E isomers, at least as can be seen from the upfield shifts of the CH₂-7 (0.6-0.9 ppm) and CH₂-6 (0.15-0.25 ppm) protons caused by the phenyl group(s) in compounds Vc,d,g,h in comparison with Va,b,e,f (Table III). By our method of cycloadding dichloroketene to N, N-disubstituted α -aminomethyleneketones [2], the reaction of Va-h with dichloroacetyl chloride and triethylamine (dichloroketene prepared in situ) occurred readily both in the case of aliphatic and aromatic N-substitution to give, generally in good yield, N,N-disubstituted 4-amino-3,3-dichloro-4,5,6,7-tetrahydro-(7-methyl)(7-phenyl)pyrano[2,3-e]indazol-2(3H)-ones VIa-h (Table IV), whose structure was confirmed by uv, ir and nmr spectral data (Table V). All these adducts were dehydrochlorinated with DBN according to [4] to afford N, N-disubstituted 4-amino-3-chloro-6,7-dihydro-(7-methyl)-(7-phenyl)pyrano[2,3-e]indazol-2(5H)-ones VIIa-h generally in good yield (Tables VI and VII).

Compounds VIIa-h proved to be very resistant to a full

aromatization with DDQ in refluxing benzene [5,6]; therefore this reaction was tried only with VIIa,e to give, after a very long reflux time (about 12 days), 3-chloro-4-dimethylamino-(7-methyl)(7-phenyl)pyrano[2,3-e]indazol-2(7H)-ones

Table I

1,5,6,7-Tetrahydro-5-hydroxymethylene-(1-methyl)(1-phenyl)-4Hindazol-4-ones III and IV

Formula Number	R'	Yield%	Mp °C [a]	Molecular Formula		ialyses lcd./Fou	
			.,		С	H	N
III	CH,	80	101	C ₉ H ₁₀ N ₂ O ₂	60.67	5.66	15.72
	-				60.56	5.71	15.98
IV	C ₆ H ₅	73	105	$C_{14}H_{12}N_2O_2$	69.99	5.03	11.66
					70.07	4.97	11.91

UV, IR and NMR Spectral Data of Compounds III and IV

	UV, λ max nm (log ϵ)	IR, cm ⁻¹	NMR, δ
III	255 (3.91) 292 (4.05)	1723, 1642, 1590	2.74 and 2.82 (2 mc, CH ₂ -6 + CH ₂ -7), 3.81 and 3.94 (2 s, CH ₃ N), 7.38 (mc, = CH-0), 7.88 (s, CH-3), 8.00 (s, -CH = 0), 11.90 (broad s, OH; disappears with deuterium oxide)
IV	228.5 (4.17) 257 (4.16) 294 (4.02)	1643, 1528	2.4-3.1 (m, CH_2 -6 + CH_2 -7), 7.54 (mc, C_6H_5 + = CHOH), 8.13 (near s, CH-3)

[a] From anhydrous diethyl ether.

Table II

N,N-Disubstituted (E)-5-Aminomethylene-1,5,6,7-tetrahydro-(1-methyl)(1-phenyl)-4H-indazol-4-ones Va-h

Formula Number	R'	NR ₂	Yield %	Mp °C [a]	Molecular Formula		Analyses % Calcd./Found	
						С	H	N
Va	СН,	N(CH ₃) ₂	78	164	$C_{11}H_{18}N_3O$	64.37	7.37	20.47
						64.34	7.28	20.50
$\mathbf{V}\mathbf{b}$	CH,	Piperidino	74	130	$C_{14}H_{19}N_3O$	68.54	7.81	17.13
						68.50	7.80	17.15
Vc	CH ₃	N(CH ₃)C ₆ H ₅	74	183	$C_{16}H_{17}N_3O$	71.89	6.41	15.72
						71.90	6.38	15.70
Vd	СН₃	$N(C_6H_5)_2$	79	194	$C_{21}H_{19}N_3O$	76.57	5.81	12.76
						76.55	5.79	12.80
Ve	C ₆ H ₅	$N(CH_3)_2$	81	172	$C_{16}H_{17}N_{3}O$	71.89	6.41	15.72
						72.18	6.63	15.51
$\mathbf{V}\mathbf{f}$	C_6H_5	Piperidino	83	151	$C_{19}H_{21}N_3O$	74.24	6.89	13.67
		-				74.49	6.82	13.50
Vg	C ₆ H ₅	N(CH ₃)C ₆ H ₅	90	167	$C_{21}H_{19}N_3O$	76.57	5.81	12.76
					** **	76.55	5.80	12.76
$\mathbf{V}\mathbf{h}$	C6H5	$N(C_6H_5)_2$	88	236	$C_{26}H_{21}N_3O$	79.77	5.41	10.73
						79.86	5.41	10.66

[a] From ethyl acetate.

Table III
UV, IR and NMR Spectral Data of Compounds Va-h

Compound	UV, λ max nm (log ϵ)	IR, 6		NMR, δ
Va	234 (3.96) 253 (3.97) 352 (4.38)	1642	1572	2.6-3.4 (m, CH ₂ -6 + CH ₂ -7), 3.12 [s, (CH ₃) ₂ N], 3.81 (s, CH ₃ N-1), 7.53 (near s, = CHN), 7.90 (s, CH-3)
Vb	235 (3.94) 253 (3.95) 355 (4.39)	1637	1572	1.66 (mc, 3 CH ₂ pip), 2.87 (mc, CH ₂ -6 + CH ₂ -7), 3.44 (mc, 2 CH ₂ N), 3.82 (s, CH ₃ N), 7.53 (near s, = CHN), 7.90 (s, CH-3)
Vc	237 sh (3.99) 255 (4.05) 364 (4.40)	1643	1568	2.15-2.90 (m, CH_2 -6 + CH_2 -7), 3.45 (s, CH_3 NPh), 3.78 (s, CH_3 N-1), 6.9-7.6 (m, C_0H_5 N), 7.68 (near s, = CHN), 7.94 (s, CH_3 N)
Vd	243.5 (4.12) 277 (4.10) 372 (4.43)	1643	1566	2.13 (near t, $J = 6.5$, CH_2 -7), 2.61 (near t, $J = 6.5$, CH_2 -6), 3.77 (s, CH_3 N), 6.9-7.6 (m, 2 C_6 H ₃ N), 7.82 (near s, $= CHN$), 7.95 (s, CH -3)
Ve	228 (4.21) 258 (4.21) 355 (4.39)	1639	1569	2.97 (s, CH_2 -6 + CH_2 -7), 3.10 [s, $(CH_3)_2$ N], 7.50 (mc, C_6H_5 N + = CHN), 8.12 (s, CH -3)
Vf	229 (4.19) 258 (4.19) 358 (4.43)	1638	1572	1.64 (mc, 3 CH ₂ pip), 2.94 (s, CH ₂ -6 + CH ₂ -7), 3.40 (mc, 2 CH ₂ N), 7.51 (mc, C_6H_5N), 7.57 (near s, = CHN), 8.11 (near s, CH-3)
Vg	233 (4.24) 260 (4.18) 366 (4.41)	1645	1566	2.35 (mc, CH_2 -7), 2.81 (mc, CH_2 -6), 3.44 (s, CH_3 N), 7.14 (mc, C_6H_3 NMe), 7.46 (mc, C_6H_3 N-1), 7.70 (near s, = CHN), 8.13 (s, CH -3)
Vh	235 (4.32) 272 (4.26) 374.5 (4.43)	1650	1567	$\begin{array}{llllllllllllllllllllllllllllllllllll$

VIIIa,e (Table VIII) in good to moderate yield. The reaction of V with methanesulfonyl chloride and triethylamine (sulfene prepared in situ) occurred in moderate yield once more only in the case of aliphatic N-substitution to give 4-dialkylamino-4,5,6,7-tetrahydro-(7-methyl)(7-phenyl)-3H-1,2-oxathiino[6,5-e]indazole 2,2-dioxides IXa,b,e,f, whose structure was confirmed by uv, ir and nmr spectral data (Table IX).

EXPERIMENTAL

The uv spectra were measured in 95% ethanol with a Hitachi-Perkin-Elmer Model EPS-3T spectrophotometer. The ir spectra were taken in chloroform on a Perkin-Elmer Model 398 spectrophotometer; the nmr spectra were recorded in deuteriochloroform on a Perkin-Elmer Model R-600 instrument (60 MHz, TMS as internal standard, J in Hz). Melting points were determined with a Mettler FP1 apparatus. 1,5,6,7-Tetrahydro-5-hydroxymethylene-(1-methyl)(1-phenyl)-4H-indazol-4-ones III and IV.

A mixture of ketone I or II [1] (0.1 mole), ethyl formate (11.11 g, 0.15 mole) and sodium (2.53 g, 0.11 mole) in anhydrous toluene (650 ml) was kept at room temperature for 40 hours, starting the reaction by adding 0.5-1 ml of anhydrous ethanol. The mixture was treated with water (200 ml), the aqueous phase was extracted with ether and acidified with 6M hydrogen chloride (pH 3-4). The precipitate was extracted thoroughly with ether (III) or chloroform (IV), and the relative extracts were dried (magnesium sulfate) and evaporated under reduced pressure to give III or IV as white solids (Table I). About 10% of starting ketone was recovered from the ether extracts before acidification (see above).

General Procedure a) for Enaminones Va,b,e.

A solution of secondary amine (11 mmoles), hydroxymethyleneketone III or IV (10 mmoles) in anhydrous toluene (150 ml) was kept at room temperature for 24 hours. The toluene solution was decanted from the water which separated and evaporated under reduced pressure. The solid residue was purified by recrystallization from a suitable solvent (Table II)

General Procedure b) for Enaminones Vc,d,f,g,h.

A solution of secondary amine (11 mmoles), hydroxymethyleneketone III or IV (10 mmoles) and p-toluenesulfonic acid (0.1 g) in anhydrous to-

Table V

UV, IR and NMR Spectral Data of Compounds VIa-h

_	•			•
Compound	UV, λ max nm (log ϵ)	IR, 6 C=0		NMR, δ
VIa	255 sh (3.89) 279 (4.09)	1778	1678	2.52 [s, $(CH_3)_2N$], 2.79 (mc, CH_2 -5 + CH_2 -6), 3.72 (s, CH -4), 3.82 (s, CH_3N -7), 7.52 (s, CH -9)
VIb	255 sh (3.93) 279 (4.10)	1780	1680	1.47 (mc, 3 CH ₂ pip), 2.78 (mc, 2 CH ₂ N + CH ₂ -5 + CH ₂ -6), 3.67 (s, CH-4), 3.82 (s, CH ₃ N), 7.51 (s, CH-9)
VIc	250.5 (4.27) 290 sh (3.82)	1784	1683	$\begin{array}{llllllllllllllllllllllllllllllllllll$
VId	248 (4.23) 260 sh (4.20) 275 sh (4.11)	1784	1687	2.82 (s, CH_2 -5 + CH_2 -6), 3.78 (s, CH_3N), 5.26 (s, CH -4), 6.8-7.5 (m, 2 C_6H_5N + CH -9)
VIe	238 (4.18) 284 (4.19)	1779	1679	2.55 [s, $(CH_3)_2N$], 2.4-3.3 (m, CH_2 -5 + CH_2 -6), 3.77 (near s, CH -4), 7.50 (s, C_6H_5N), 7.76 (near s, CH -9)
VIf	237 (4.19) 283 (4.16)	1777	1677	1.48 (mc, 3 CH ₂ pip), 2.4-3.3 (m, 2 CH ₂ N + CH ₂ -5 + CH ₂ -6), 3.70 (s, CH-4), 7.51 (s, C ₆ H ₃ N), 7.76 (s, CH-9)
VIg	245 (4.40) 282 sh (4.10)	1783	1683	2.4-3.3 (m, CH_2 -5 + CH_2 -6), 2.73 (s, CH_3 N), 4.97 (near s, CH -4), 6.8-7.4 (m, C_6H_5 NMe), 7.49 (s, C_6H_5 N-7), 7.80 (s, CH -9)
VIh	225 (4.38) 241.5 (4.35) 265 sh (4.25) 280 sh (4.19)	1785	1683	$\begin{array}{l} 2.5\text{-}3.2 \ (m, \ CH_2\text{-}5 \ + CH_2\text{-}6), \\ 5.31 \ (near \ s, \ CH\text{-}4), \ 6.85\text{-}7.45 \\ (m, \ 2 \ C_6H_5N), \ 7.50 \ (s, \ C_6H_5N\text{-}7), \ 7.59 \ (s, \ CH\text{-}9) \end{array}$

Table IV

N,N-Disubstituted 4-Amino-3,3-dichloro-4,5,6,7-tetrahydro-(7-methyl)(7-phenyl)pyrano[2,3-e]indazol-2(3H)-ones VIa-h [a]

Formula Number	R'	NR ₂	Yield %	Mp °C	Molecular Formula		Analyses % Calcd./Found	
						С	Н	N
VIa	СН₃	N(CH ₃) ₂	89	185 [b]	C13H,5Cl2N3O2	49.38	4.78	13.29
						49.17	4.55	13.30
\mathbf{VIb}	CH ₃	Piperidino	49	140 [b]	$C_{16}H_{19}Cl_2N_3O_2$	53.94	5.38	11.79
						53.80	5.32	11.80
VIc	CH₃	$N(CH_3)C_6H_5$	78	147 [b]	$C_{18}H_{17}Cl_2N_3O_2$	57.16	4.53	11.11
						57.24	4.51	11.13
VId	СН,	$N(C_6H_5)_2$	83	159 [c]	$C_{23}H_{19}Cl_2N_3O_2$	62.74	4.35	9.54
						62.88	4.35	9.50
VIe	C_6H_5	$N(CH_3)_2$	67	127 [d]	$C_{18}H_{17}Cl_2N_3O_2$	57.16	4.53	11.11
						56.91	4.51	11.35
VIf	C ₆ H ₅	Piperidino	51	136 [d]	$C_{21}H_{21}Cl_2N_3O_2$	60.30	5.06	10.04
						60.28	5.00	9.96
VIg	C_6H_5	N(CH ₃)C ₆ H ₅	90	146 [b]	$C_{23}H_{19}Cl_2N_3O_2$	62.74	4.35	9.54
						62.61	4.52	9.80
VIh	C_6H_5	$N(C_6H_5)_2$	86	146 [c]	$C_{28}H_{21}Cl_2N_3O_2$	66.94	4.21	8.36
					-	66.91	4.28	8.35

[a] All compounds were prepared according to the literature [6]; solvent, anhydrous toluene; reaction time, 4 hours at room temperature, with the exception of VIg (2 hours at 70°) and VIh (4 hours at 70°). [b] From ethyl acetate. [c] From 95% ethanol. [d] From anhydrous diethyl ether.

Table VI

N,N-Disubstituted 4-Amino-3-chloro-6,7-dihydro-(7-methyl)(7-phenyl)pyrano[2,3-e]indazol-2(5H)-ones VIIa-h [a]

			ĸ					
Formula Number	R'	NR ₂	Yield %	Mp °C	Molecular Formula	٠.	Analyses % Calcd./Found	
						C	Н	N
VIIa	СН₃	N(CH ₃) ₂	48	241 [b]	$C_{13}H_{14}CIN_3O_2$	55.82	5.04	15.02
						55.66	5.01	14.98
VIIb	CH₃	Piperidino	58	275 [b]	$C_{16}H_{18}ClN_3O_2$	60.09	5.67	13.14
					10 10 0 2	59.90	5.62	13.00
VIIc	СН,	$N(CH_3)C_6H_5$	84	252 [b]	$C_{18}H_{16}CIN_3O_2$	63.25	4.72	12.29
						63.06	4.55	12.28
VIId	CH ₃	$N(C_6H_5)_2$	84	290 [b]	$C_{23}H_{18}ClN_3O_2$	68.40	4.49	10.40
						68.40	4.45	10.30
VIIe	C_6H_5	$N(CH_3)_2$	37	229 [c]	$C_{18}H_{16}CIN_3O_2$	63.25	4.72	12.29
						63.50	4.74	12.15
VIIf	C_6H_5	Piperidino	79	232 [b]	$C_{21}H_{20}CIN_3O_2$	66.05	5.28	11.00
						65.87	5.14	10.87
VIIg	C_6H_5	N(CH ₃)C ₆ H ₅	86	213 [b]	$C_{23}H_{18}CIN_3O_2$	68.40	4.49	10.40
						68.31	4.27	10.60
VIIh	C ₆ H ₅	$N(C_6H_5)_2$	94	295 [c]	$C_{28}H_{20}CIN_3O_2$	72.18	4.33	9.02
						72.25	4.44	9.05

[a] All compounds were prepared from the corresponding VI by dehydrochlorination with DBN according to the literature [4]; solvent, anhydrous toluene; reflux time, 30 minutes. [b] From 95% ethanol. [c] From toluene.

Table VII
UV, IR and NMR Spectral Data of Compounds VIIa-h

Compound	UV, λ max nm		IR, cm ⁻¹	NMR, δ
	$(\log \epsilon)$	C = O	C = C	,
VIIa	230 (3.94) 256 (3.99) 355 sh (4.17) 358 (4.19)	1693	1607 1568	2.86 (s, CH_2 -5 + CH_2 -6), 3.02 [s, $(CH_3)_2N$], 3.81 (s, CH_3N -7), 7.68 (s, CH -9)
VIIb	230 (3.92) 257 (3.95) 339 (4.17) 360 sh (4.17)	1690	1610 1572	1.70 (mc, 3 CH ₂ pip), 2.90 (s, CH ₂ -5 + CH ₂ -6), 3.29 (mc, 2 CH ₂ N), 3.83 (s, CH ₃ N), 7.66 (s, CH-9)
VIIc	238 (4.23) 265 sh (3.88) 376 (4.32)	1713	1610 1566	2.45-2.80 (m, CH ₃ -5 + CH ₂ -6), 3.34 (s, CH ₃ N-Ph), 3.77 (s, CH ₃ N-7), 6.80 (mc, 3 H aryl), 7.31 (mc, 2 H aryl), 7.75 (s, CH-9)
VIId	235 (4.17) 275.5 (4.29) 380 (4.35)	1708	1610 1568	2.35-2.75 (m, CH_2 -5 + CH_2 -6), 3.74 (s, CH_3 -N), 6.9-7.6 (m, 2 C_6H_5 N), 7.76 (near s, CH_3 -9)
VIIe	228 (4.23) 255.5 (4.13) 335 sh (4.23) 355 (4.25)	1698	1612 1568	3.03 (mc, 2 CH ₃ N + CH ₂ -5 + CH ₂ -6), 7.50 (s, C_6H_5N), 7.94 (s, CH-9)
VIIf	228 (4.25) 257 (4.12) 345 (4.26)	1690	1611 1568	1.68 (mc, 3 CH ₂ pip), 2.97 (near t, $J \sim 5$, CH ₂ -5 + CH ₂ -6), 3.30 (mc, 2 CH ₂ N), 7.51 (s, C ₆ H ₅ N), 7.92 (s, CH-9)
VIIg	233.5 (4.34) 375 (4.38)	1712	1612 1563	2.49 (mc, CH ₂ -5), 2.87 (mc, CH ₂ -6), 3.35 (s, CH ₃ N), 6.60-7.45 (m, C ₆ H ₅ NMe), 7.47 (near s, C ₆ H ₅ N-7), 7.99 (near s, CH-9)
VIIh	223 sh (4.34) 257 sh (4.25) 271 (4.28) 379 (4.37)	1709	1613 1567	2.41 (mc, CH ₂ -5), 2.85 (mc, CH ₂ -6), 6.90-7.55 (m, 2 C_6H_5N), 7.44 (s, C_6H_5N -7), 8.00 (near s, CH-9)

Table VIII

3-Chloro-4-dimethylamino-(7-methyl)(7-phenyl)pyrano[2,3-e]indazol-2(7H)-ones VIIIa,e [a]

Formula Number	R'	Yield %	Mp °C	Molecular Formula		alyses :d./Fo	
					С	Н	N
VIIIa	CH ₃	40	228 [b]	$C_{13}H_{12}CIN_3O_2$			15.13 15.36
VIIIe	C ₆ H ₅	76	225 [c]	$C_{18}H_{14}ClN_3O_2$	63.63	4.15	

UV, IR and NMR Spectral Data of Compounds VIIIa,e

	UV, λ max nm (log ϵ)	IR, cm ⁻¹	NMR, δ
VIIIa	219 (4.48)	1705, 1628,	3.22 [s, (CH ₃) ₂ N], 4.10 (s,
	258 (4.32)	1587, 1545,	CH ₃ N-7), 7.27 and 7.66 (2 d,
	299 (4.10)	1448	J = 9, CH-5 and CH-6), 8.24
	329 (4.19)		(near s, CH-9)
VIIIe	215 sh (4.37)	1710, 1628,	3.23 [s, (CH ₃) ₂ N], 7.20-7.95
	241.5 (4.33)	1583, 1542,	$(m, C_6H_5N + CH-5 +$
	260 (4.36)	1437	CH-6), 8.52 (near s, CH-9)
	304 sh (4.10)		
	333 (4.30)		

[a] All compounds were prepared according to the literature [5]; reflux time, 300 hours. [b] From 95% ethanol. [c] From toluene.

Table IX
4-Dialkylamino-4,5,6,7-tetrahydro-(7-methyl)(7-phenyl)-3H-1,2-oxathiino[6,5-e]indazole 2,2-Dioxides IXa,b,e,f [a]

Formula Number	R'	NR_2	Yield %	Mp °C	Molecular Formula	Analyses % Calcd./Found		
						C	Н	N
IXa	CH ₃	N(CH ₃) ₂	44	157 [b]	$C_{12}H_{17}N_3O_3S$	50.87 50.66	6.05 6.00	14.83 14.60
IXb	СН3	Piperidino	37	162 [c]	$C_{15}H_{21}N_3O_3S$	55.71	6.54	12.99
IXe	C ₆ H ₅	N(CH ₃) ₂	50	197 [b]	$C_{17}H_{19}N_3O_3S$	55.82 59.11	6.48 5.54	13.11 12.16
IXf	C ₆ H ₅	Piperidino	35	189 [b]	$C_{20}H_{23}N_3O_3S$	59.43 62.32 62.06	5.58 6.01 5.93	12.30 10.90 10.93

UV, IR and NMR Spectral Data of Compounds IXa,b,e,f

	UV, λ max nm	I	[R, cm ⁻¹	NMR, δ
	$(\log \epsilon)$	C = C	0 = S = 0	
IXa	250 (3.95) 255 (3.95) 267 sh (3.85)	1665	1377 1178	$2.30[s,(CH_3)_2N],2.73(mc,CH_2\text{-}5+CH_2\text{-}6),3.1\text{-}3.6(m,CH_2\text{-}3),3.77(s,CH_3\text{-}N\text{-}7),3.7\text{-}4.2(m,CH\text{-}4),7.44(nears,CH\text{-}9)}$
IXb	250 (3.96) 255 (3.97) 269 sh (3.82)	1666	1377 1183	1.54 (mc, 3 CH ₂ pip), 2.51 (mc, CH ₂ -5 + CH ₂ -6), 2.75 (mc, 2 CH ₂ N), 3.25-3.60 (m, CH ₂ -3), 3.78 (s, CH ₃ N), 3.7-4.2 (m, CH-4), 7.43 (s, CH-9)
IXe	224 (4.20) 251.5 (4.00) 261 (3.98) 276 (3.94)	1663	1378 1178	2.33 [s, (CH ₃) ₂ N], 2.55-3.20 (m, CH ₂ -5) + CH ₂ -6), 3.25-3.75 (m, CH ₂ -3), 3.80-4.25 (m, CH-4), 7.48 (s, C_6H_5N), 7.70 (near s, CH-9)
IXf	224 (4.22) 251 (4.03) 260.5 (4.00) 275.5 (3.95)	1663	1378 1184	1.53 (mc, 3 CH ₂ pip), 2.52 (mc, 2 CH ₂ N), 2.6-3.2 (m, CH ₂ -5 + CH ₂ -6), 3.53 (mc, CH ₂ -3), 3.7-4.3 (m, CH-4), 7.47 (s, C_6H_5N), 7.68 (near s, CH-9)

[a] All compounds were prepared according to the literature [7], using anhydrous THF as the solvent. [b] From 95% ethanol. [c] From ethyl acetate.

luene (200 ml) was refluxed for 4 hours in a Dean-Stark apparatus. After cooling, the solution was washed with 1M sodium hydroxide and water, dried (magnesium sulfate) and evaporated under reduced pressure. The solid residue was purified as above (Table II).

Acknowledgements.

The authors wish to thank Mr. A. Panaro for the microanalyses and Mr. F. Fasce and Dr. S. Morasso for the uv, ir and nmr spectra. Financial support from CNR, Rome is gratefully acknowledged.

REFERENCES AND NOTES

[1] P. Schenone, L. Mosti and G. Menozzi, J. Heterocyclic Chem.,

- 10 1355 (1099)
- [2] G. Menozzi, L. Mosti and P. Schenone, ibid., 20, 539 (1983).
- [3] G. Menozzi, L. Mosti, P. Schenone and S. Cafaggi, *ibid.*, 19, 937 (1982).
- [4] F. Evangelisti, G. Bignardi, A. Bargagna and P. Schenone, ibid., 15, 511 (1978).
- [5] L. Mosti, G. Menozzi and P. Schenone, *ibid.*, 18, 1263 (1981);
 L. Mosti, P. Schenone, G. Menozzi, G. Romussi, F. Baccichetti, F. Carlassare, D. Vedaldi and F. Bordin, *Eur. J. Med. Chem.*, 18, 113 (1983).
- [6] G. Bignardi, F. Evangelisti, P. Schenone and A. Bargagna, J. Heterocyclic Chem., 9, 1071 (1972); A. Bargagna, F. Evangelisti and P. Schenone, ibid., 16, 93 (1979).
 - [7] P. Schenone, G. Bignardi and S. Morasso, ibid., 9, 1341 (1972).